Д.Н. Володин, к. т. н., директор, А.С. Гридин, заместитель директора, В.К.Топалов, руководитель службы продаж (ООО «ДМП»),
И.А.Евдокимов, д-р т. н., (ФГАОУ ВО «СКФУ»)
Переработка молока № 3, 2021
Хорошо известно, что молоко, которое, по выражению академика И.П. Павлова, является «изумительной и наиболее совершенной пищей, приготовленной самой природой», всегда составляло значимую долю рынка пищевых продуктов. Однако отношение потребителя к молоку как к пищевому продукту постепенно меняются от восприятия его на уровне «еды», до современных представлений о пищевой ценности входящих в его состав компонентов. Привычные критерии (вкусовые характеристики, доступность, цена) понемногу вытесняются критериями влияния продуктов на здоровье и безопасность, что, в свою очередь, требует от производителей выпуска продукции со свойствами, выходящими за рамки стандартных характеристик. Уникальный компонентный состав молока позволяет превращать основной продукт питания в сырье для производства функциональных ингредиентов с заданными свойствами. Основой большинства технологий ингредиентов из молока является его мембранная обработка с использованием процессов микро-, ультрафильтрации (рис. 1) либо их комбинаций, которые позволяют фракционировать молоко без изменения фазового состояния отдельных компонентов, минимизируя денатурирующее воздействие на белки, витамины и другие биологически важные составляющие перерабатываемого сырья [1].
Рисунок 1. Направления фракционирования казеиновой фракции обезжиренного молока
В традиционной переработке молока мембранные технологии используются, например, для концентрирования белка при производстве сыра. В зависимости от вида сыра сырье может быть сконцентрировано в 1,2–6,0 раза [2], за счет чего увеличивается выход в готовом продукте, сокращаются потери белка в виде казеиновой пыли, уменьшается расход энергоносителей, сервисных сред и т.д. Это в конечном счете повышает экономическую эффективность производства. При мембранном фракционировании компонентов молочного сырья процесс ультрафильтрации является основой получения концентратов и изолятов молочного белка (КМБ / ИМБ) (рис. 2), в которых соотношение казеин/сывороточные белки остается аналогичным этому соотношению в обрабатываемом сырье. КМБ широко применяется в пищевой промышленности для производства сыров, кондитерских изделий, йогуртов, мороженого, мясных продуктов, хлебобулочных, кондитерских изделий, шоколада, кофе. ИМБ входят в рецептуры продуктов спортивного питания, продуктов для снижения веса, энтерального и лечебного питания и т.д. [4]. Микрофильтрация используется для получения концентратов мицеллярного казеина (КМК). КМК – это неденатурированный казеин в естественной глобулярной структуре. В зависимости от количества удаляемого сывороточного белка, фракционирование обезжиренного молока дает ряд концентратов, отличающихся по соотношению казеин/сывороточные белки (рис. 2).
Рисунок 2. Фракционный состав белковых концентратов на основе молока
Это соотношение может варьироваться от 80:20, типичного для молока, до 95:5 в высокоочищенном КМК. Как правило, КМК должен иметь соотношение казеин/сывороточные белки не менее 92:8. Также как и при получении КМБ, для увеличения содержания общего белка в сухом веществе, снижения содержания лактозы и минеральных веществ может использоваться дополнительный шаг диафильтрационной обработки [3]. Основной областью применения КМК, особенно с высоким содержанием белка в сухом веществе, является спортивное питание. С другой стороны, амфипатическая структура, отсутствие стабильных вторичных и третичных структур казеинов способствуют их высокой поверхностной активности, что придает КМК хорошие пенообразующие и эмульгирующие свойства. Поэтому КМК включают в рецептуры самых разнообразных пищевых продуктов, таких как аналоги сыра, кремы для взбивания, сливочные ликеры, мясные изделия, различные диетические продукты [4]. Можно отметить, что в последние годы наблюдается определенный рост интереса к фракциям чистого казеина, особенно к β-казеину, благодаря его физико-химическим свойствам, биологическим и технологическим свойствам [5]. β-казеин имеет очень высокую поверхностную активность и может найти применение в качестве высокоактивного эмульгатора или пенообразователя. Обогащение молока β-казеином улучшает его сыродельные свойства. Этот белок также может включаться в смеси для грудного вскармливания для их адаптации. Фракция αS -казеина имеет структуру, позволяющую использовать ее в качестве структурообразователей и стабилизаторов. В процессах разделения фракций казеина, помимо мембранных процессов, используется их селективное осаждение, ионообменная хроматография, электрофорез и т.д. Если говорить о еще более глубоком фракционировании с использованием ферментативной обработки, то чистые фракции казеина являются источниками пептидов с биологической/физиологической активностью, например пептидов, которые обладают антигипертензивной активностью или способствуют всасыванию минералов [6]. С точки зрения перспектив промышленной реализации следует принимать во внимание, что технологии производства функциональных белковых ингредиентов требуют определенных капитальных затрат, которые связаны с организацией участка мембранной обработки сырья, подготовкой сырья к фракционированию, модернизацией или приобретением современного сушильного оборудования. Поэтому, начиная внедрение подобных технологий, следует ориентироваться в первую очередь на продукты, для которых прогнозируется устойчивый рост рынка. Так, например, по оценке GlobeNewswire, к концу 2027 г. мировой рынок КМК достигнет около 1050 млн долл. США, а КМБ – 3,44 млн долл. США, при этом в течение прогнозируемого периода (2019–2027 гг.) среднегодовой темп роста составит 6,1 и 4,0 %, соответственно. Тем не менее при должной организации такие технологии могут быть инвестиционно привлекательными, поскольку предприятие получает возможность вырабатывать ингредиенты с высокой добавленной стоимостью, не имеющие отечественных аналогов и способные конкурировать с импортными ингредиентами.
Список литературы
1. Мягкие сыры с УФ-концентратами / О.А. Суюнчев, И.Е. Евдокимов, А.С. Рудаков, Н.Я. Дыкало // Сыроделие и маслоделие. – 2007. – № 1. – С. 21–22.
2. Володин Д.Н. Процессы ультрафильтрации в рентабельной технологии сыров / Д.Н. Володин, И.А. Евдокимов, И.К. Куликова // Молочная промышленность. – 2019. – № 9. – С. 18–20. – ISSN 1019-8946
3. Carter B.G. Invited review: Microfiltration-derived casein and whey proteins from milk / B G Carter, N Cheng, R Kapoor, G H Meletharayil, M A Drake // Journal of Dairy Science. – 2021. – Vol. 104, No. 3.
4. Rebouillat S. Potential Applications of Milk Fractions and Valorization of Dairy By-Products: A Review of the State-ofthe-Art Available Data, Outlining the Innovation Potential from a Bigger Data Standpoint / S Rebouillat, S. OrtegaRequena // Journal of Biomaterials and Nanobiotechnology. – 2015. – Vol. 06. – No. 03. – P. 27.
5. Atamer Z. Isolation of casein protein fractions / Z. Atamer, K. Thienel, A. Holder, T. Schubert, R. Boom, J. Hinrichs // Advances in Food Science and Human Nutrition. – 2017 – Vol. 1, No. 1.
6. Mohantya D.P. Milk derived bioactive peptides and their impact on human health – A review / D.P. Mohantya, S. Mohapatra, S. Misrac. P.S. Sahub // Saudi Journal of Biological Sciences. – 2016. – Vol. 23. – Issue 5. – P. 577–583.